Observations & Recommendations

After reviewing data collected from GRANITE LAKE, STODDARD, the program coordinators have made the following observations and recommendations.

Thank you for your continued hard work sampling the lake this year! Your monitoring group sampled the deep spot three times this year and has done so for many years! As you know, conducting multiple sampling events each year enables DES to more accurately detect water quality changes. Keep up the good work!

As part of the state’s lake survey program, DES biologists performed a comprehensive lake survey on GRANITE LAKE in AUGUST during 2006. Publicly-owned recreational lakes/ponds in the state are surveyed approximately every ten to 20 years. In addition to the tests normally conducted through VLAP, biologists tested for certain indicator metals and nitrogen, created a map of the lake depth contours called a bathymetric map, and mapped the abundance and distribution of the aquatic plants along the shoreline. DES biologists will also sample the lake once during the Winter of 2006-2007. Some data from this lake survey have been included in this report and has been added to the historical database for your lake. If you would like a complete copy of the raw data from the lake survey, please contact the DES Limnology Center Director at (603) 271-3414 or the VLAP Coordinator at (603) 271-2658. A final report should be available in 2008 and a copy will be available at any state library and will be posted on the DES website at www.des.state.nh.us/WMB/lakes/lake_water.

Figure Interpretation

- Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling year that the lake has been monitored through VLAP.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems,
the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. The median summer chlorophyll-a concentration for New Hampshire’s lakes and ponds is 4.58 mg/m³.

The current year data (the top graph) show that the chlorophyll-a concentration increased slightly from June to July, and then decreased from July to August.

The historical data show that the 2006 mean chlorophyll concentration is less than the NH state median and slightly greater than the similar lake median.

Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual chlorophyll-a concentration has not significantly changed since monitoring began. Specifically, the annual mean chlorophyll-a concentration has fluctuated between approximately 0.65 and 2.14 mg/m³, but has not continually increased or decreased since 1989. Please refer to Appendix E for a detailed statistical analysis explanation and data print-out.

While algae are naturally present in all lakes, an excessive or increasing amount of any type is not welcomed. In freshwater lakes, phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes. Algal concentrations may increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters.

Figures 2a and 2b and Tables 3a and 3b: Figure 2a in Appendix A shows the historical and current year data for transparency without the use of a viewscope and Figure 2b shows the current year data for transparency with the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the lake has been monitored through VLAP.

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural color of the water. The median summer transparency for New Hampshire’s lakes and ponds is 3.2 meters.
The current year data (the top graph) show that the non-viewscope in-lake transparency decreased slightly from June to July, and then increased from July to August.

It is important to note that as the chlorophyll concentration increased from June to July, the transparency decreased, and as the chlorophyll decreased from July to August, the transparency increased. We typically expect this inverse relationship in lakes. As the amount of algal cells in the water increases, the depth to which one can see into the water column typically decreases, and vice-versa. The historical data (the bottom graph) show that the 2006 mean non-viewscope transparency is much greater than the state median and is slightly greater than the similar lake median. Please refer to Appendix F for more information about the similar lake median.

The current year data (the top graph) show that the viewscope in-lake transparency increased gradually from June to August. The transparency measured with the viewscope was generally greater than the transparency measured without the viewscope one each sampling event this summer. As discussed previously, a comparison of the transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event.

It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency has not been historically measured by DES with a viewscope. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs.

Overall, the statistical analysis of the historical data shows that the mean annual in-lake non-viewscope transparency has significantly increased (meaning improved) on average by approximately 1.7 percent per year during the sampling period 1989 to 2006. Please refer to Appendix E for the statistical analysis explanation and data print-out. We hope this improving trend continues!

Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts should continually be made to stabilize stream banks, lake shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of
Observations and Recommendations (Biennial Report)

2006

Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request.

- **Figure 3 and Table 8:** The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake has been sampled through VLAP.

Phosphorus is typically the limiting nutrient for plant and algae growth in New Hampshire’s lakes and ponds. Excessive phosphorus in a lake can lead to increased plant and algal growth over time. The **median summer total phosphorus concentration in the epilimnion** (upper layer) of New Hampshire’s lakes and ponds is 12 ug/L. The **median summer phosphorus concentration in the hypolimnion** (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration remained stable from June to July, and then decreased from July to August.

The historical data show that the 2006 mean epilimnetic phosphorus concentration is much less than the state median and is slightly greater than the similar lake median. Refer to Appendix F for more information about the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration increased from June to July, and then decreased from July to August.

The historical data show that the 2006 mean hypolimnetic phosphorus concentration is much less than the state median and is slightly less than the similar lake median. Please refer to Appendix F for more information about the similar lake median.

Overall, visual inspection of the historical data trend line for the epilimnion and hypolimnion shows a variable phosphorus trend since monitoring began. Specifically the mean annual epilimnetic phosphorus concentration has fluctuated between approximately 2.5 and 8.5 ug/L, and the mean annual hypolimnetic phosphorus concentration has fluctuated between approximately 3.5 and 11 ug/L, since monitoring began in 1989.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents...
about the sources of phosphorus in a watershed and how excessive phosphorus loading can negatively affect the ecology and the recreational, economical, and ecological value of lakes and ponds.

Table Interpretation

- **Table 2: Phytoplankton**
 Table 2 in Appendix B lists the current and historical phytoplankton species observed in the lake. Specifically, this table lists the three most dominant phytoplankton species observed in the sample and their relative abundance in the sample.

 The dominant phytoplankton species observed in the July sample were *Anabaena* (cyanobacteria), *Aphanocapsa* (cyanobacteria), *Dinobryon* (golden-brown), *Mallomonas* (golden-brown), and *Synura* (golden-brown).

 Phytoplankton populations undergo a natural succession during the growing year. Please refer to the “Biological Monitoring Parameters” section of this report for a more detailed explanation regarding yearly plankton succession. Diatoms and golden-brown algae are typical in New Hampshire’s less productive lakes and ponds.

- **Table 2: Cyanobacteria**
 The cyanobacterium *Anabaena* was the most-dominant species in the July plankton sample. In addition, a small amount of the cyanobacteria *Oscillatoria* was observed in the July plankton sample. *These species, if present in large amounts, can be toxic to livestock, wildlife, pets, and humans.* Please refer to the “Biological Monitoring Parameters” section of this report for a more detailed explanation regarding cyanobacteria.

 Cyanobacteria can reach nuisance levels when phosphorus loading from the watershed to surface waters is increased and favorable environmental conditions occur, such as a period of sunny, warm weather.

 The presence of cyanobacteria serves as a reminder of the lake’s delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading to the lake by eliminating fertilizer use on lawns, keeping the lake shoreline natural, re-vegetating cleared areas within the watershed, and properly maintaining septic systems and roads.

 In addition, residents should also observe the lake in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing
gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to “pile” cyanobacteria into scums that accumulate in one section of the lake. If a fall bloom occurs, please collect a sample in any clean jar or bottle and contact the VLAP Coordinator.

- **Table 4: pH**
 Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data.

 pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire’s lakes and ponds is 6.6, which indicates that the surface waters in the state are slightly acidic. For a more detailed explanation regarding pH, please refer to the “Chemical Monitoring Parameters” section of this report.

 The mean pH at the deep spot this year ranged from 5.82 in the hypolimnion to 6.14 in the epilimnion, which means that the water is *slightly acidic*.

 It is important to point out that the pH in the hypolimnion (lower layer) was *lower (more acidic)* than in the epilimnion (upper layer). This increase in acidity near the lake bottom is likely due to the decomposition of organic matter and the release of acidic by-products into the water column.

 Due to the presence of granite bedrock in the state and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is not much that can be feasibly done to effectively increase lake pH.

- **Table 5: Acid Neutralizing Capacity**
 Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the lake has been monitored through VLAP.

 Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire’s lakes and ponds is 4.9 mg/L, which indicates that many lakes and ponds in the state are at least “moderately vulnerable” to acidic inputs. For a more detailed
explanation about ANC, please refer to the “Chemical Monitoring Parameters” section of this report.

The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was 1.4 mg/L, which is much less than the state median. In addition, this indicates that the lake is extremely vulnerable to acidic inputs.

➢ Table 6: Conductivity
Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire’s lakes and ponds is 40.0 uMhos/cm. For a more detailed explanation, please refer to the “Chemical Monitoring Parameters” section of this report.

The mean annual epilimnetic conductivity at the deep spot this year was 57.65 uMhos/cm, which is greater than the state median.

The 2006 conductivity results for the deep spot and tributaries were lower than has been measured during the past several years. It is likely that the high water levels during 2006 diluted the conductivity concentration in surface waters throughout the watershed. Specifically, the unusually large amount of watershed runoff from the significant late spring rain events likely exceeded the amount of groundwater contribution to the tributaries and lake. In addition, any winter contribution of chloride to surface waters from road salt was likely flushed out of the tributaries and the lake before the lake stratified during the summer.

Overall, the conductivity has increased in the lake and tributaries since monitoring began. Typically, increasing conductivity indicates the influence of pollutant sources associated with human activities. These sources include failed or marginally functioning septic systems, agricultural runoff, and road runoff which contains road salt during the spring snow-melt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct stream surveys and storm event sampling along the tributaries with elevated conductivity so that we can determine potential sources to the lake.
For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monitoring.pdf, or contact the VLAP Coordinator.

We also recommend that your monitoring group conduct a shoreline conductivity survey of the lake and the tributaries with elevated conductivity to help identify the sources of conductivity.

To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2004/documents/Appendix_D.pdf or contact the VLAP Coordinator.

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the lake. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride).

A limited amount of chloride sampling was conducted on the August DES Lake Survey Program sampling event. Please refer to the discussion of Table 13 for more information.

- Table 7a and Table 7b: Total Kjeldahl Nitrogen and Nitrite+Nitrate Nitrogen
 Table 7a in Appendix B presents the current year and historical Total Kjeldahl Nitrogen and Table 7b presents the current year and historical nitrite and nitrate nitrogen. Nitrogen is another nutrient that is essential for the growth of plants and algae. Nitrogen is typically the limiting nutrient in estuaries and coastal ecosystems. However, in freshwater, nitrogen is not typically the limiting nutrient. Therefore, nitrogen is not typically sampled through VLAP. However, if phosphorus concentrations in freshwater are elevated, then nitrogen loading may stimulate additional plant and algal growth. Please refer to the “Chemical Monitoring Parameters” section of this report for a more detailed explanation.

 The lake is likely phosphorus-limited. Therefore, it is not critical to conduct nitrogen sampling.

- Table 8: Total Phosphorus
 Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae’s ability to grow and reproduce.
Please refer to the “Chemical Monitoring Parameters” section of this report for a more detailed explanation.

The total phosphorus concentration was *elevated* in the Inlet sample on the **July 20** and **August 20** sampling events (21 and 27 NTUs, respectively). The turbidity of each sample was also *at least slightly elevated* (1.55 and 5.4 NTUs, respectively). This station has had a history of *elevated and fluctuating* phosphorus and turbidity concentrations, which suggests that soil erosion is occurring in this area of the watershed. We recommend that your monitoring group conduct a stream survey and storm event sampling along this tributary so that we can determine what may be causing the elevated concentrations.

Please note that in Table 8, page 8-2, there is a reading of 130ug/L for the metalimnion. This sample point was collected in the metalimnion of the lake, and the reading is *much higher* than any in lake readings for Granite Lake. We believe that the sample container was either contaminated, or that there was a laboratory error in analyzing this sample, and do not believe that the TP was truly 130ug/L at this station. We will watch for any anomalies in 2007.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monitoring.pdf, or contact the VLAP Coordinator.

Table 9 and Table 10: Dissolved Oxygen and Temperature Data

Table 9 in Appendix B shows the dissolved oxygen/temperature profile(s) collected during 2006. Table 10 in Appendix B shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the “Chemical Monitoring Parameters” section of this report for a more detailed explanation.

The dissolved oxygen concentration was *high* at all deep spot depths sampled at the lake on the **July 20** and **August 22** sampling events. As thermally stratified lakes age, and as the summer progresses, oxygen typically becomes *depleted* in the hypolimnion (lower layer) by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the lake where the water meets the sediment. The *high* oxygen level in the hypolimnion is a sign of the lake’s overall good health. We hope this continues!
The dissolved oxygen concentration was greater than 100 percent saturation at 0.1, 1.0, 2.0, 3.0, 5.0, 6.0, and 7.0 on the July 20 sampling event, and at 7.0 meters on the August 22 sampling event. Wave action from wind can also dissolve atmospheric oxygen into the upper layers of the water column. Layers of algae can also increase the dissolved oxygen in the water column, since oxygen is a by-product of photosynthesis.
Table 11: Turbidity
Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the “Other Monitoring Parameters” section of this report for a more detailed explanation.

As discussed previously, turbidity and total phosphorus concentration were both elevated in the Inlet sample on the July 20 and August 20 sampling events, which suggests that soil erosion is occurring in this area of the watershed. We recommend that your monitoring group conduct a stream survey and storm event sampling along this tributary so that we can determine what may be causing the elevated concentrations.

For a detailed explanation on how to conduct rain event sampling, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monitoring.pdf, or contact the VLAP Coordinator.

Table 12: Bacteria (E.coli)
Table 12 in Appendix B lists the current year and historical data for bacteria (E.coli) testing. E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage may be present. If sewage is present in the water, potentially harmful disease-causing organisms may also be present.

On the August 22 DES Lake Survey Program sampling event, two in-lake locations were sampled for E.coli. The E.coli concentrations ranged from 10 to 20 counts, which is relatively low.

If residents are concerned about sources of bacteria, such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct E. coli testing when the water table is high, when beach use is heavy, or immediately after rain events.

Table 13: Chloride
Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl⁻) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted acute and chronic...
chloride criteria of 860 and 230 mg/L respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the “Chemical Monitoring Parameters” section of this report for a more detailed explanation.

On the August 22 DES sampling event, the epilimnion and hypolimnion at the deep spot were sampled for chloride. The results were 13 and 10 mg/L, respectively, which are both much less than the state acute and chronic chloride criteria. However, these concentrations are greater than what we would normally expect to measure in undisturbed New Hampshire surface waters.

We recommend that your monitoring group conduct chloride sampling in the epilimnion at the deep spot and in the tributaries located downstream of salted roadways, particularly in the spring soon during snow-melt and during rain events during the summer. This will establish a baseline of data that will assist your monitoring group and DES to determine lake quality trends in the future.

Please note that there will be an additional cost for each of the chloride samples and that these samples must be analyzed at the DES laboratory in Concord.

Table 14: Current Year Biological and Chemical Raw Data
Table 14 in Appendix B lists the most current sampling year results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year “raw,” meaning unprocessed, data. The results are sorted by station, depth, and then parameter.

Table 15: Station Table
As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.
DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your lake, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled-out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures, as outlined in the VLAP Monitor’s Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an excellent job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work!

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future re-occurrences of improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did an excellent job when collecting samples and submitting them to the laboratory this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis.

USEFUL RESOURCES

